Phototropins promote plant growth in response to blue light in low light environments.

نویسندگان

  • Atsushi Takemiya
  • Shin-Ichiro Inoue
  • Michio Doi
  • Toshinori Kinoshita
  • Ken-Ichiro Shimazaki
چکیده

Phototropins (phot1 and phot2) are plant-specific blue light receptors for phototropism, chloroplast movement, leaf expansion, and stomatal opening. All these responses are thought to optimize photosynthesis by helping to capture light energy efficiently, reduce photodamage, and acquire CO2. However, experimental evidence for the promotion of plant growth through phototropins is lacking. Here, we report dramatic phototropin-dependent effects on plant growth. When plants of Arabidopsis thaliana wild type, the phot1 and phot2 mutants, and the phot1 phot2 double mutant were grown under red light, no significant growth differences were observed. However, if a very low intensity of blue light (0.1 micromol m(-2) s(-1)) was superimposed on red light, large increases in fresh weight up to threefold were found in those plants that carried functional PHOT1 genes. When the intensity of blue light was increased to 1 micromol m(-2) s(-1), the growth enhancement was also found in the phot1 single mutant, but not in the double mutant, indicating that phot2 mediated similar responses as phot1 with a lower sensitivity. The effects occurred under low photosynthetically active radiation in particular. The well-known physiological phototropin-mediated responses, including chloroplast movement, stomatal opening, and leaf expansion, in the different lines tested indicated an involvement of these responses in the blue light-induced growth enhancement. We conclude that phototropins promote plant growth by controlling and integrating a variety of responses that optimize photosynthetic performance under low photosynthetically active radiation in the natural environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Flavoprotein Photoreceptors

Plants depend on the surrounding light environment to direct their growth. Blue light (300-500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genet...

متن کامل

A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening

Stomata in the plant epidermis open in response to blue light and affect photosynthesis and plant growth by regulating CO2 uptake and transpiration. In stomatal guard cells under blue light, plasma membrane H+-ATPase is phosphorylated and activated via blue light-receptor phototropins and a signaling mediator BLUS1, and H+-ATPase activation drives stomatal opening. However, details of the signa...

متن کامل

Blue light receptors and signal transduction.

A plant blue light response was documented as early as 1881 by Darwin when he discovered what is now known as the blue light–induced phototropic response (Darwin, 1881). However, blue light receptors mediating phototropism and other photoresponses in plants have remained elusive until recently. On the basis of molecular genetic studies in Arabidopsis, it is clear now that there are two types of...

متن کامل

High pigment1 mutation negatively regulates phototropic signal transduction in tomato seedlings.

Phototropins and phytochromes are the major photosensory receptors in plants and they regulate distinct photomorphogenic responses. The molecular mechanisms underlying functional interactions of phototropins and phytochromes remain largely unclear. We show that the tomato (Lycopersicon esculentum) phytochrome A deficient mutant fri lacks phototropic curvature to low fluence blue light, indicati...

متن کامل

An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis.

The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2005